Measurement of Water Vapour Ingress in PET Bottles and Correlation with Oxygen and Carbon Dioxide Permeation
The beer and beverage industry is using ever more barrier enhanced plastic bottles for the filling of its products. The quality of the products can be considerably affected by the permeation of oxygen into the bottle and carbon dioxide out of it. The quality control of the bottles with particular emphasis on the gas barrier is thus of great importance. However, the conventional gas permeation measuring method needs too much time. In order to respond effectively and quickly to barrier defects, bottle production or incoming goods inspection measuring time must be shortened, for example by 2 hours. A physical problem of a quick measurement of oxygen is the comparably long unsteady state of permeation due to desorption of oxygen into the bottle after filling..
In order to overbear this difficulty methods are tested which use other gases or as in this instance water vapour. Instead of a complete permeation only the migration of water from PET into the bottle inner is measured. The ruggedness of the method meets the requirements of the practical measurement conditions. The correlation of the water vapour migration rate with the permeation of carbon dioxide and oxygen measured with a real-time method is linear. Active barriers employing scavenger material can not be detected by the water vapour ingress measurement.
BrewingScience - Monatsschrift für Brauwissenschaft, 61 (May/Juni 2008), pp. 105-112